
Rigorous Mathematics Language with Graphs

Alec Martin

August 15, 2020

1 Introduction

This paper introduces a language in which we can make rigorous mathematical
statements by constructing graphs. The language shares the title of this paper,
which we shorten to GRML. The goal of GRML is to create a concrete, uniform
format for making mathematical statements. Doing this allows for, among other
things, the creation of computer applications which can understand, interpret,
and manipulate mathematical statements directly by working on the graphs
used to make said statements.

This is certainly not the first attempt to put math on computers. However,
one thing which differentiates GRML from other math-computer languages is
that GRML is not intended to accomplish any active tasks like proving theorems
or discovering new material. GRML is a purely passive language, intended
only to allow for stating the various things we mathematicians state in our
work. GRML is designed to be used in other computer programs for whatever
mathematical application is desired, but GRML itself does not do any processing
beyond what is required to ensure a statement makes sense.

1.1 A Note on Computers

We can take a moment to compare two intersections between mathematics and
computers which most modern mathematicians are familiar with – TEX and
ASCII/Unicode. Although TEX is used primarily for typesetting documents, it
is a full fledged computer language on its own (i.e. is Turing complete). TEX
is a language which can do things, can process things, and nobody hesitates to
call it a computer language.

ASCII/Unicode, on the other hand, is merely a format for allowing com-
puters to work with the letters and other symbols we use in written language.
It is a stretch to call ASCII a computer language because it does not process
information, i.e. it is not a Turing complete language. It certainly plays an
important role in using computers, however. Computers are purely concrete
machines: anything a computer processes must be given as a sequence of binary
values, physically a sequence of voltage levels. Letters used in written language

1



are somewhat abstract, so they cannot be understood and processed by a com-
puter. We use ASCII (or Unicode) to translate between letters and sequences
of voltages so that we can put words into a computer.

GRML is much more like ASCII than TEX, although GRML is not so low-
level as to involve actual binary data. GRML encodes abstract mathematics
into graphs. There are ways to translate a graph into physical data on which a
computer can work, but we are not interested in the technicalities of that step.
Instead we focus on how we will take an abstract mathematical statement and
state it as a graph via GRML, with the understanding that graphs are concrete
enough for computers to work on directly.

2 The Graphs We Use

2.1 Terminology

In this paper we will be working with colored directed acyclic graphs. Essen-
tially every metamathematical concept we feature in GRML will be encoded as
some particular structure imposed on the classes of directed acyclic graphs with
various degrees of coloring.

Our graphs consists of finitely many vertices called members and finitely
many edges. When we say a ∈ G we mean that a is a member of G. By colors
we mean identifiers. Coloring a particular object allows us to tell if two objects
share the same color or not, we could call it labeling or naming too.

In each graph we require that each member has a color which we call the
type of the member and another color which we call the id of the member. No
two members of a graph can share the same id. Each edge has a color as well,
we call this the name of the edge. Each graph itself has a color which we call
the UI (universal identifier) of the graph and we insist that no two different
graphs can share the same UI. We universally fix one color which we call no
color . If a member is colored with no color then we say it has no type and if
an edge has no color then we say it has no name. We insist that no graph can
be given the UI no color.

We are not always interested in how the particular colors, such as the id
of each member or the UI of each graph, are assigned. The purpose of requir-
ing them is so that we have a tangible datum which can be used to connect
information between different parts of different graphs. If we omit description
of the ids of members, we implicitly assume that they have been assigned so
that each member has a unique id. Likewise with UIs of graphs. Any time this
information is relevant we will describe how so.

The edges are oriented so that each edge has a parent member and a child
member. We denote the parent member of edge N by p(N) and the child
member by c(N). For a, b ∈ G if there is an edge N with p(N) = a and
c(N) = b then we say a is a parent of b and that b is a child of a. We often
insist that no two edges can have the same name and the same parent member
in any graph. This ensures that parents can distinguish their children by name.

2



We introduce an order called ancestry inductively on G as follows: for all
a, b ∈ G, a is an ancestor of b if a is a parent of b or if a is a parent of an ancestor
of b. If a is an ancestor of b we say b is a descendant of a. We insist acyclicity
in that no member can be its own ancestor.

An elder is a member of the graph G which has no parents. Every graph has
at least one elder. An eldest is a member e ∈ G such that all other members
of G are descendants of e. An eldest member, if it exists, is unique.

For our applications it is often useful for a graph to have an eldest member.
Any graph can be modified to contain an eldest member by inserting a member
e and for each elder g ∈ G inserting an edge Ng with parent e and child g. If a
graph has an eldest member e then we call the children of e maximal .

A member g ∈ G has only one parent if there is precisely one edge N
whose child member is g. A graph is called a tree if there is an eldest member
(called the root) and if every other member has only one parent.

One graph which we are particularly interested in consists of exactly one
member and no edges. We call this the singleton graph. Any two singleton
graphs are distinguishable by color information, particularly their UIs.

2.2 Graph Homomorphisms

Suppose G,G′ are graphs and f : G → G′ is a function. That is, f is a function
from the members of G to those of G′ and from the edges of G to those of
G′. We call f a graph homomorphism if the following hold for all members
a, b ∈ G and all edges N in G with p(N) = a, c(N) = b:

• p(f(N)) = f(a) and c(f(N)) = f(b)

• f(a) has the same type as a

• f(b) has the same type as b

• f(N) has the same name as N

If G,G′ are graphs, f : G → G′ is a graph homomorphism, and g ∈ G, we
say f(g) is playing the role of g in G′.

One result which may be of interest to those developing algorithms to work
with GRML graphs is this:

Theorem 2.1. Let G be a graph with an eldest member e. Then there is a tree
T and a graph homomorphism q : T → G such that q takes the root of T to e.

Making a comparison to topology, a tree can be considered a simply con-
nected space. Then T in theorem 2.1 is an analogue of the universal cover,
though the graph T is by no means unique. Fixing one such graph T essentially
determines a map of G, providing a choice of path between any two vertices of
G in a uniform way by looking instead at T . We won’t need these details here,
though, so we move on.

3



3 Typed Graphs

This section is devoted to developing enough of the language of graphs to allow
for mathematical grammar. A grammatically correct statement would be x = y
where x, y are integers. A grammatically incorrect statement would be x = y
where x is an integer and y is a topological space, or that x = where x is an
integer and we omit stating what x is supposed to be equal to. By the end
of this section we will have described enough of GRML to see how grammar
features.

The way to make statements as graphs is through the notion of typed graphs.
We will define what a typed graph is, but the definition is recursive and we need
some background structure first: we define dictionary then we go on to define
typed graph. For a starting point, let G be a singleton graph with UI T and
whose only member has type T . We call these genesis graphs and we will see
that genesis graphs are typed graphs. It may be worth stating now that any
typed graph G must contain an eldest member whose type is the same color as
the UI of G.

A dictionary is a particular kind of graph. Terminology may change when
referring to dictionaries, we may call the members definitions and the edges
dependencies, though we retain the member/edge terminology for now. Each
member of a dictionary must be typed with the same color as the UI of some
typed graph. If G is a typed graph with UI T and D is a dictionary with a
member of type T then we say D contains the definition of G. If D contains
the definition of G we may just say that D contains G or that D contains T .

Part of being a typed graph includes a notion of dependency. Specifically, if
G is a typed graph then there is a well-defined finite set {Ti} where each Ti is
the UI of a typed graph upon which G depends. We say G is independent if
this set is empty. As we will see, genesis graphs are independent.

If a dictionary D contains a member g of type G, meaning a member whose
type is the same color as the UI of the typed graph G, then for each UI S
upon which G depends there must be a member gS ∈ D of type S and an edge
NS whose child member is gS and whose parent member is g. We call this
requirement that dictionaries must be self-contained . The condition that D
is acyclic prevents us from making circular definitions. At this point we are not
concerned with the names of the edges in a dictionary.

Suppose G is a graph, g is a non-eldest member in G, and the type of g is
the UI of a typed graph T 6= G. We say g matches its type if there is a graph
homomorphism from T to G such that g plays the role of the eldest member of
T .

We are now ready to define typed graph. Suppose G is a graph. We say G
is a typed graph if all of the following hold:

• G has an eldest member e

• The type of e is the UI of G

• Any child of e has only one parent, namely e

4



• Let X be all members of G which are not e. For x ∈ X let Tx be the type
of x. For all x ∈ X Tx is not the UI of G

• For all x ∈ X Tx is the UI of a typed graph

• For all x ∈ X x matches its type

• There is a dictionary DG such that for all x ∈ X DG contains a member
of type Tx

We call the set {Tx : x ∈ X} the set of types upon which G depends.

3.1 Using Typed Graphs

Typed graphs are the mechanism for making mathematical statements. What
we have seen so far has given us the power to declare any object definition.
An object definition is context required to make a mathematical statement.
Object definitions are different than property definitions. Observe the standard
definition of a function,

A function f : A → B where A and B are sets is a relation such
that for all a ∈ A there is a unique b ∈ B with f(a) = b.

Everything before the term “such that” is the object part of this definition.
That is, the function f needs the sets A and B and the relation f as context
before f can be said to be a function.

We say that the second half, after the “such that,” is not object definition
but behavior definition. Behavior is where mathematics gets interesting, objects
are just for context.

When a typed graph G encodes a statement we often refer to the members
of G as terms. Specifically we refer to non-eldest members of G as terms. The
eldest member is only used to turn our statement into a tangible GRML object,
it does not in general interact with the content of the statement. The meaning
of a statement is encoded in the terms, the statement itself is embodied in the
eldest member.

Let’s see how to use object definitions. Suppose S is a typed graph. Then
we think of S as defining an object type through the contents of the graph S.
If we are then constructing another statement L, we can add a term s to L of
type S. We must perform a test now to check that s is valid, namely s must
match its type. We may call this that s must match its definition, seeing as we
are using the type of s as its definition. If this test passes then we consider s to
be an instance in L of the object type S. Type matching ensures grammatical
consistency. See appendix ?? for examples of definitions given as typed graphs.

4 Encoding Behavior

We would like to be able to make statements which encode mathematical behav-
ior such as making and proving claims. The typical way we add functionality

5



to our language is by adding more layers of coloring to the components of our
graphs or by requiring some extra pieces of structure. This is commonly intended
to be universal and retroactive, so we typically introduce a default value which
we apply to everything covered before the new requirement was introduced.

The general process will be that each specific behavioral ability we introduce
will be associated to a statement type . Formally the statement type is a color
we assign to each of our typed graphs. The default value is definition , and a
statement declared as a definition is interpreted as an object definition the way
described in section 3.1. We think of the material presented there as passive
because it only allows us to make grammatically correct statements.

If we want to describe some active behavior, we encode the action in a typed
graph T and give T the statement type which corresponds to the type of action
we want to perform. Then, if we are building a statement S and we want to
refer to the behavior encoded in T , we construct a term t ∈ S of type T . We
look at the statement type of T and follow whatever algorithm was described
when that statement type was introduced. This algorithm may include an extra
verification test, and if this test passes then the algorithm performs in S the
action we originally wanted to take. The action is then succesfully executed in
S and if we need to refer to the execution of this action then we refer directly
to the term t ∈ S.

The only action we are capable of at this point is defining grammatical rules
and following them. This is because the only statement type we have seen so
far is definition. We want to consider new statement types as extensions of
previously understood statement types, with definition being the root of all
of them. This gives us the ability to recover at least some of the intended
meaning if we encounter an unfamiliar statement type. It also means that evey
statement must be grammatically correct, even if the focus is on more subtle
behavior, because each statement type is a special case of definition.

4.1 Existence Claims

The first action we would like to be able to perform is that of creating new terms
given others. We already have the ability to create terms in some given context,
but sometimes we want to specify that a term is guaranteed to exist because of
some other terms. So far we only have the ability to state what a term is, not
to specify that the term comes from the context. We call this ability making or
invoking a claim and we introduce the statement type claim for this.

Before we get to the process of constructing a claim T , we need to universally
fix a genesis definition context . That is, we define context as a type and we
do not require any children for this type. With this we can insert terms of type
context in any statement graph we construct.

Now we construct the typed graph T which is supposed to make the claim
that some terms exist given some other terms. First we build the contextual
terms into T . These play the role of what will be required to be given when the
claim is invoked and we require that there be at least one such term. We call
these context terms or given terms. Once we have completed the context terms,

6



we add a term c of type context and make c the eldest term in T by inserting
appropriate parent-child relationships. When we are finished c will no longer be
the eldest but we need c to be an ancestor of every context term.

Now that we have the context terms covered, we insert terms into T which
we would like to follow from the context. These are called our claimed terms.
We insist that no claimed term can be a parent of c if we want T to be a claim.
Claimed terms are distinguished as claimed because they are not descendants
of c. Once we have inserted all the claimed terms, we cap off T with an eldest
member to make T into a typed graph and we set the statement type of T to
claim.

Formally, a claim is a typed graph T with statement type claim such that
there is one and only one term c ∈ T of type context. Moreover, c must be
maximal and must have at least one child. We interpret T by treating any
descendant of c is as context and any other term (except c) as claimed. If we
want to read T as a traditional statement with traditional quantifiers, we start
with a ∀ clause which contains all the descendents of c. Then for each claimed
term we have a parallel statement which starts with the previous ∀ clause and
ends with a ∃ clause corresponding to the claimed term. All terms in each clause
are joined by conjunction, or “and.”

Now that we have seen how to make claims, let’s see how to invoke them.
Suppose that T is a claim graph and that we are building the statement graph
S. Suppose we have terms in S which match the context part of T . We wish
to use T to construct new terms in S and to do so in a way which records that
these new terms follow from the context.

Invoking the claim in T starts by inserting a term t of type T in our statement
graph S. Of course, to do this, we need to already have terms in S which play
the role of the given terms and the claimed terms. How we distinguish justified-
by-claim terms from the rest requires some retroactive structural addition to
typed graphs.

Every term in every typed graph is given another layer of coloring called
existence . The possible values for existence are given and justified , with the
default being given. We are not free to change existence to justified at will;
this would defeat the purpose of proofs. Instead justified comes about from the
following algorithm.

Before we give the algorithm we first require every typed graph S carry
a graph P called the existence graph. There must be a 1-1 correspondence
between members of P and members of S. If a, b ∈ P with a a descendant of
b in P , it must be that b is justified in S and we interpret the relationship as
that the justification of b relies on a.

No statement can have a term with an existence of justified without some
corresponding reliance in P . If we add a feature to GRML which results in a
graph being considered valid with a justified term which has no other terms on
which it relies, then we will have broken GRML. There are no absolute truths
in GRML – all truth is relative.

Suppose a, b ∈ P and a is a child of b. The name of this parent-child edge
must be the id of a term t ∈ S where t is a term of statement type claim. That

7



is, the graph T which defines the type of t must have statement type claim (or
some extension of claim). In this way the existence graph records which terms
are justified, which claims were used, which terms invoked these claims, and in
each invocation which terms were given as context. The requirement that P be
acyclic ensures that no term can justify itself.

Now that we have the necessary structure of existence graphs, we can de-
scribe the algorithm for invoking a claim. Suppose T is a claim, S is a statement,
and we have already constructed the terms in S which we want to use as context
in the claim we are invoking. The next thing we do is insert terms to S which
we want to be justified by this invocation. Then we add t and set its children
appropriately.

At this point we first check that t matches its type T as a definition. Once
this is verified, we need to account for the actual claim by manipulating the
proof graph. Suppose C is the set of terms in S which play the roles of context
terms in T and let E be the terms in S which play the roles of claimed terms.
For every c ∈ C and e ∈ E, we make e a parent of c in P with the child name t.

If doing this introduces a cycle in P then we stop and the test failed. If P
remains acyclic then the test passed and we have succesfully invoked the claim.
We now set the existence of every term in E to be justified.

4.2 Testables

Another useful behavior we want to have available is boolean truth. Suppose
we have a definition D and a term d of type D. If we are considering D as just
a definition, we cannot refer to d as being true or false. The only thing we can
say about d is what its children are, i.e. in what context d resides. With the
addition of claim, we can also say whether d is given or justified, but not whether
d is true or false. It is very common in math, however, to use the dichotomy of
true and false. In fact, we could consider the fundamental purpose of proof as
striving to show that something must be true. We introduce this behavior of
allowing us to consider at all whether d is true or false through the statement
type testable .

We do not want to blindly make every concept testable. That adds unneces-
sary complication and does not even make sense with the rest of the language.
If we define Set with a genesis graph, a natural approach which we see in prac-
tice in the appendix, that means sets need no context to exist. Essentially, that
means the phrase “Let X be a set” makes sense on its own. We could also read
that as “X is a set” where this is the introduction of X and is the first thing we
state. If Set were testable, that would mean the phrase “X is a set” could be
either true or false. Truth is not really a problem because that is in some sense
what we meant anyway, but what does it mean for this statement to be false?
The only thing we know about X is that X is a set, and if that statement is
false then what is X?

We avoid this confusion by not making the genesis definition Set testable.
If Set is just a definition, it does not make sense to ask about the validity of
the phrase “X is a set.” That phrase is neither true nor false, we interpret it

8



as only existing in its context. Being a genesis graph there is no context, so
we interpret “X is a set” as merely being a statement and we prefer to phrase
it “Let X be a set” to avoid the temptation of thinking it can be tested. In
general we do not want genesis graphs to be testable because falsehood does not
make sense without context.

An example of something we do want to be testable is the concept of empti-
ness of a set: if X is a set then X is empty or not. We can imagine performing
a test to decide if X is empty or not if we are given the set X. In this case
the test is to try to find an element of X. We want to be assured that, in
principle, this test will always give a result. Moreover we want this test to be
exclusive and well-defined in that X should be either empty or not, and not
be both, regardless of how we approach finding out. This behavior is precisely
what we mean by testable and when we declare set emptiness to be testable we
are assuming this behavior.

The only requirement a typed graph must pass before being able to be
marked as testable is that it is not a genesis graph. There is no requirement for
a term of type testable in addition to definition, the only requirement is that
terms match their definitions.

4.3 Implications

Note that existence claims have no knowledge of testability. This means, in
particular, that we cannot negate an existence claim. This is a serious hole
which we fill now with a new statement type, the implication . The statement
type of implication extends that of claim.

An implication has three components: context, assumed, and claimed. If we
want to look at an implication as a claim, we consider the context (rel. implica-
tion) and assumed portions together as the context (rel. claim) component. The
claimed component plays the same role in both interpretations. What makes
an implication different from a claim is that every term in the assumed and
claimed sections must be of type testable.

Formally we universally fix a genesis graph assumption . An implication is
a typed graph S with precisely one term c of type context and one term a of
type assumption. We require c to be a child of a and a to be maximal. Any
descendant of c is called a context term, any descendant of a which is not a
context term is called an assumed term, and any other term is called a claimed
term.

The distinction between context and assumed is more than just that as-
sumed terms must be testable. We may choose to put some testable terms in
the context portion even though they could be placed in the assumed portion.
The distinction allows us fine control over things like taking the contrapositive
or converse of an implication. We can only consider assuming, validating, or
negating terms in the assumed or claimed sections – we do not consider context
terms as testable so we do not mention them as true or false. They are merely
context.

9



Before describing how invoking an implication works we need to decribe
proof graphs. Every statement S must carry a graph P called the proof graph.
The idea is similar to the existence graph, but now we consider only testable
terms.

Every member p of P corresponds to a testable term in S. We insist p be
designated (colored) as true or false, we call this the truth value of p. Any time
p, q ∈ P with p a parent of q, the child name must be the id of a corresponding
term in S of type implication.

4.3.1 Contradiction

One of the most powerful tools available to a mathematician is contradiction.
Without it we would be unable to prove any but the simplest claims. In fact,
in some sense, in GRML we are going to interpret proof as the pursuit of con-
tradiction in the effort to avoid it. That is, contradiction will be fundamental
to proof as we implement it so we now discuss contradiction in GRML.

We universally fix a genesis graph called contradiction . This defines the
type contradiction, so according to our rules we can arbitrarily insert terms of
type contradiction into our statements. However, recall we default terms to
the existence level of given, which we can also treat as assumed. While we are
free in mathematics to assume a contradiction at any point, doing so typically
destroys any meaning we are trying to convey. We are only interested in when
we can prove a contradiction in some context, meaning when a term of type
contradiction is justified. Moreover we attempt to avoid this situation, so we
typically describe how a justified contradiction can come about specifically so
that we do not wind up in that situation.

As a rule, we limit our statements to have at most one term of type con-
tradiction, and we do not want such a term unless it is justified or about to be
justified. This is more of a style rule than a fundamental requirement but it
helps keep things organized.

We want to interpret contradiction as being equivalent to simultaneous truth
and falsehood. To do this, we introduce a rule for when contradictions can be
justified. Suppose S is the statement we are currently constructing and T is
some testable type. If we have two terms t, f ∈ S, both of type T , and both
with exactly the same children, but t is true and f is false, then we justify a
contradiction term c. In the existence graph c is made to be a parent of both t
and f , with corresponding child names true and false. If a statement graph S
has a justified member of type contradiction then S is said to be a contradiction
or S is said to be in contradiction.

10


